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ABSTRACT 

The velocity of a small projectile accelerated by a plane layer of explosive is calculated for three cases: 
the explosive is bounded on both faces by voids and the projectile is either ahead of or behind the slab, 
and the explosive is bounded by void in front and a rigid wall behind with the projectile in front. The 
detonation gases are assumed polytropic with y = 3 and the force on the projectile is given by a simple 
drag formula. The presence of the projectile is assumed not to affect the gas flow. The results show that 
it is relatively easy to accelerate the projectile to half the detonation velocity, but quite impractical to 
obtain, say, nine-tenths of detonation velocity. The first configuration mentioned above is most satis
factory for experimental purposes. The maximum stagnat ion pressure on the projectile is estimated to 
be the order of J 50 kilobars, and this is assumed to represent the magnitude of the deformation stress 
leading to fragmention. The case of the projectile imbedded in the explosive surface is not considered. 

NOTATION 

space coordinate subscript denoting values at the 

time coordinate Chapman-Jouguet plane 

detonation velocity Po initial explosive density 
projectile velocity, ds/dt l' 

polytropic exponent of detonation a explosive thickness 
gases, = 3.0 

b initial position of projectile 
sound velocity in detonation gases Q acceleration parameter, = 2 KpoAa/9m 
Riemann velocity, = 2c/(J' - 1) y dimensionless space coordinate,= s/a 

mass of projectile z dimensionless time, = Dt/a 

position of projectile at time t y' dy/dz 

drag coefficient yoo 
, 

terminal velocity of projectile 

cross-sectional area of projectile Yo, Zo initial values 

density of detonation gases at (x, t) d explosive diameter 

particle velocity of detonation gases at L explosive 1ength 
(x, t) Go deformation stress on projectile 

I. INTRODUCTION 

Problems of ballistic missile re-entry and space travel 
have caused attention to be focussed on the consequen
ces of high velocity impact of small projectiles on 
various shield configurations (Johnson, 1969) and on 
methods for producing projectiles with suitably high 
velocities in the laboratory (Lukasiewicz, 1965). High 

explosives have sometimes been used for accelerating 
smaIl projectiles in a configuration which consists of 
the projectile mounted on or near one face of a cylinder 
of explosive, which is detonated at the opposite face. 
The projectiles are then accelerated in the direction of 
travel of the detonation front. Variations of this 
configuration include encasing of the explosive in a 
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strong, heavy cylinder or forcing the detonation gases 
to flow through a nozzle and/or a blow-away barrel. 
Use of shaped charge jets is a different technique, but 
one which appears to yield higher velocities. It will 
not be discussed here. 

In this paper we calculate the velocities of projectiles 
mounted at an arbitrary distance from the face of an 
explosive slab of finite thickness and of indefinite 
extent in transverse directions. These will provide 
upper limits to velocities produced by cylinders of 
finite diameter, encased or not, with projectiles 
mounted on an exposed face. The effect of a nozzle to 
direct the detonation gases adds another dimension 
to the problem and is not considered here. 

The detonation is assumed to be a Chapman
Jouget detonation in which the detonation gases have 
a polytropic pressure-density relation with exponent 
y, i.e. 

1= 2c/(y - 1) 

UI = D/(y + 1); CI = Dy/(y + 1) 

PI = PoD2/(y + 1); PI = Po(Y + 1)/y. 

We assume y = 3, which assures that characteristics 
in the (x, t) plane are straight and simplifies the cal
culation. Experimental values of y for condensed 
explosives are reasonably near this, ranging from 
2.77 for 64/36 Compo B to 3.17 for TNT (Deal, 1957). 
Computed values for the velocity of a rigid plate 
accelerated by explosive show that small variations 
of y near three have little effect on the gas flow (Aziz, 
1961). Consequently, we expect that values computed 
here are close to true upper limits to projectile velo
cities obtained in the geometry described. 

The projectile to be accelerated is assumed to be 
initially at rest at an arbitrary distance from the 
explosive face, and it begins to move when the first 
detonation gases flow past it. Its presence produces 
a perturbation in the hydrodynamic field, but if the 
projectile is very small, the perturbation will be rapidly 
reduced to negligible magnitude by geometric diver
gence. The essential notion of the calculation is that 
the perturbation is negligible everywhere; the velo
cities thus calculated are correct for projectiles which 
are very small compared to explosive thickness. 

The drag exerted on the projectile is assumed to be 
proportional to the square of the relative velocity, 
(u - ds/dt), between projectile and gases and to the 
local gas density p. The equation of motion of the 
projectile is then 

md2s/dt2 = ± KAp(u - ds/dt)2, (1) 

where the sign is that of u - ds/dt, K is a drag 
coefficient and A is the projectile cross section pre
sented to the gas flow. Initial conditions are s = b, 
ds/dt = 0 when the first signal from the detonation 
reaches the projectile. The procedure to be followed is 
to determine particle velocity, u, and density, p, for 
detonation gases at an arbitrary point (x, t) in the 
flow field. Then u = u(s, t) and p = pes, t) along the 
trajectory. These are substituted into Eq. (1) and the 
resulting equation is integrated numerically. 

ll. GAS FLOW FIELD 

Two explosive configurations are considered. In El 
the slab is bounded on either face by a void. In E2 the 
left boundary is rigid. In both cases the explosive faces 
are located at x = 0 and x = a and the detonation is 
initiated at x = 0, t = 0. 

A. Case El 

The flow field is represented in the (x, t) plane by 
Figure 1 and in the hodograph (u, /) plane by Figure 2. 
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Figure 1 

Flow field for unconfined explosive, case El. 
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Figure 2 

Hodograph plane for flow of Figure 1, case El. 

Region I in the (x, t) plane is bounded by the detona
tion front OP, by the C+ characteristic OF, and by 
the C- characteristic PG. The Chapman-Jouget state 
along OP is represented by point "a" in Figure 2, 
and the forward-facing rarefaction of Region I lies 
on the r- curve abo Point b in Figure 2 is the image of 
OF in Figure ], which consequently has a slope 

dt/dx = -2/D. 
Reflection of the detonation wave from the free 

surface at x = a (Figure I) produces a rarefaction fan 
with straight C - characteristics centered at the point 
P(x = a, t = a/D). The detonation gases are then 
accelerated into the void (x > a) with limiting velocity 
D. Forward expansion is along af in Figure 2, and a 
region of overlap between the reflected rarefaction and 
the rarefaction following the detonation (the Taylor 
wave) is established as Region II of Figure 1. 

For Region I: 

C+: u+c=x/t 

C - : u - c = - D/2 

c = (x/t + D/2)/2 (2b) 

p = 8Po(x/t + D/2)/9D (2c) 

Since Region I is a simple wave mapped on ab of 
Figure 2, any curve traversing Region I lies on abo 
In particular the line PG, which separates Region II 
from Region I, lies on abo PG is the leading C
characteristic of the fan passing through P of Figure I, 
so 

(dx/dt)PG = u - c = (x - a)/(t - a/D) 

But, since PG maps onto ab of Figure 2, u - c = 
-D/2 and 

(x - a)/(t - a/D) = -D/2 

PG is then parallel to OF, and for every other C
characteristic passing through P, 

dx/dt = (x - a)/(t - a/D) > - D/2 

For Region II: 

C - : u - c = (x - a)/(t - a/D) 

C+: u + c = x /t 

u = exit + (x - a)/(t - a/ D)]/2 (3a) 

c = exit - (x - a)/(t - a/ D)]/2 (3b) 

P = 16poc/9D (3c) 

Region II of Figure I maps into the triangle abf of 
Figure 2. 

B. Case E2 

The explosive is bounded at x = ° by a rigid 
backing and at x = a by a void. The flow field is 
shown in Figure 3. Region I behind the detonation 
front is a simple wave centered at (0,0). Reflection 
at the free surface produces a backward-facing wave 
centered at A. The interaction of this wave with the 
Taylor wave and the rigid boundary produces the 
distinct and identifiable regions shown. Region III is 
a uniform state bounded by the last characteristic of 

the Taylor wave, OH, the leading characteristic of the 
reflection fan, AC, and the rigid boundary. The 

necessity for such a uniform region is shown in 

u = (x/t - D/2)/2 (2a) Figure 4. Here the point "a" is the Chapman-Jouget 
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Figure 3 

Flon field for confined explosive, case E2. 

-0 

Figure 4 

Hodograph mapping of flow field El of Figure 3. 

state, and Region I lies along the r -characteristic abo 
Region I terminates at u = 0, the condition imposed 
by the rigid boundary. Region III of Figure 3 is then 
mapped into the single point "III" of Figure 4. A tra
verse around the point A from OA to AB lies on or 
very close to the r + characteristic ac in Figure 4. 
Region II of Figure 3 is mapped into the quadrilateral 
acdr of Figure 4. The boundary characteristic, OH, 
lies along dr. Region IV is again a simple wave region 
mapped onto the r + characteristic u + c = D/2, 
shown in Figure 4. Region V is a mixed region re
sUlting from interaction of the reflected rarefaction 
centered at A with its image in the x = 0 plane. The 
t-axis from C upward maps into the u = 0 axis, Or 
in Figure IV. The boundary CG corresponds to dr in 
Figure 4, and the open side of the triangular region 
V maps into Od of Figure 4. In symbols, these relations 
can be expressed as follows: 

Region I: Same as Region I of Case El. 

Region II: Same as Region II of Case El. 

Region III: 

Region IV: 

u=o 

c = D/2 

P = 8po/9 

C+: u + c = D/2 

C-: u-c=(x-a)/(t-a/D) 

u = [D/2 + (x - a)/(t - a/D)]/2 

(4a) 

(4b) 

(4c) 

(Sa) 

c = [D/2 - (x - a)/(t - a/ D)]/2 (Sb) 

p = 16Poc/9D (Sc) 

Region V: 

C+: u+c=(x+a)/(t-a/D) 

C-: u-c=(x-a)/(t-a/D) 

u = x/(t - a/D) 

c = a/(t - a/D) 

p = 16poa/9D(t - a/D) 

(6a) 

(6b) 

(6c) 
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III. PROJECTILE MOTION 

Three cases are considered: PI, the projectile is 
accelerated in the + x direction for explosive con
figuration EI with b > a; P2, the projectile is ac
celerated in the - x direction for explosive configurat
tion E1 with b < 0; P3, the projectile is accelerated 
in the +x direction for explosive configuration E2 
with b > a. For 'Y = 3 Eg. (J) can be written 

y' = ± 8Q(c/D)(u/D - y')2 (7) 

where y = s/a, z = Dt/a, Q = 2KpoAa/9m, and 
y' == dy/dz. Initial conditions are y = Yo, y' = 0 at 
z = zoo The three cases are distinguished by the 
expressions for u and c, given in the previous section. 

A. Case PI, b > a 

The projectile path is the dotted curve bH in Figure 1. 
Substituting Egs. (3) into (7) with x = s yields the 
equation to be solved for y: 

y. = Q[Y/z - (y - l)/(z - 1)] 
(8) 

[y/z + (y - l)/(z - 1) -2y')2 

Motion of the projectile lies entirely within Region II 
since u > 0 for all t > a/D. Moreover the acceleration 
is never negative: u > ds/dt initially and the difference 
diminishes as the projectile accelerates and the veloCity 
of its local environment changes. When u = ds/dt, 
the projectile is in a region of constant particle velocity 
with no forces acting on it, so it will continue in that 
state indefinitely. 

Eq. (8) has been integrated numerically for various 
values of b/a > 0 and for various Q. The results are 
shown in Figures 5 and 6 and in Table 1. The terminal 
velocity is taken to be the last value obtained in the 
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Figure 5 
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Trajectory and velocity of projectile for case PI; b = 1.5a, 
Q = 1.0. 
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Figure 6 

10 100 

Terminal velocities of explosively accelerated projectiles. Initial 
positions: PI and P3, b/a = 1.1; P2, b/a = -.01. 

numerical integration, usually at z > 10.0. The effect 
of varying Yo is illustrated in Table 1. There is an 
appreciable increase of final velocity with Yo, the 
terminal velocity increasing as Yo increases and the 
cbange being greater for small Q than for large. 
As Yo approaches unity Eq. (7) becomes meaningless 
because it ignores the finite size of the object accele
rated; it also becomes singular. 

TABLE I 

TERMINAL VELOCITIES OF EXPLOSrvELY ACCELERATED PROJECTILES 

Yo = xo/a = -.01 FOR P2. Voo = D(dy/dz)z=oo 

Pl,P3 

Q xo/a PI 

.01 

.05 

.10 

1.0 

10.0 

100.0 

I.l 

1.5 

1.5 

1.1 

1.5 

1.01 

1.1 

1.5 

1.1 

1.5 

1.1 

1.5 

.00587 

.00633 

.0292 

.0530 

.0572 

.261 

.284 

.299 

.632 

.649 

.848 

.858 

e 

P3 P2 PI P2 P3 

.0\09 .00503 1.09 .0015 1.06 

.0884 .0448 

.338 .220 

.351 

.632 .408 

.848 .480 

.989 .194 .766 

.632 .408 .124 

.268 .808 .267 

.103 1.50 .104 
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Trajectories for all values of Q listed in Table I are 
similar to.that shown in Figure 5, except that the final 
velocity is approached more rapidly for larger Q. 
In each case the trajectory is asymptotic to a straight 
line, y = e + Yro 'z, where Yro ' is the asymptotic 
value of dyjdz. Terminal velocities for Yo = 0.0 are 
plotted as curve PI in Figure 6; values of e are given 
in Table I. 

B. Case P2 

The projectile path is the dotted curve JK of Figure 1. 
The equation of motion in Region I is obtained by 
substituting Eqs. (2) into Eq. (7). Defining y and z as 
before yields: 

mum in e for P3, Table I. For Q ~ 1.0, the projectile 
passes into IV and V; for Q ~ 10 it remains in II. 
This possibility can be inferred from Figure 4. Values 
of y and z can be transformed to (u, c) pairs and plotted 
to yield the curve cvq for Q = 10. Physically, this 
occurs because the particle first enters Region II where 
u = D and p = 0, experiencing little acceleration. 
As time passes, p increases and u decreases but is still 
much larger than y. Then as time increases still more, 
p begins to decrease because the detonation gases 
have blown past the particle or are traveling backward. 
Moreover u -t v so the acceleration is doubly-dimi
nished. At the point q in Figure 4 the projectile has 
reached its terminal velocity, equal to the value of u 
at q. The form of this curve suggests that it would be 

y' = - Q(y/z + I/2)(y/z - 1/2 - 2y')2 (9) useful for estimating Yro '· 

Eq. (8) with a change of sign still applies in Region 
II. The projectile starts out in Region I and remains 
there so long as (y - I)/(z - 1) < -1/2. When 
(y - I)/(z - 1) > -1/2, Eq. (9) applies. When the 
projectile crosses the boundary between I and II, 
y and y' are continuous. Initial conditions are y = bfa, 
y' = 0 at z = 2b/a, b < O. Terminal velocities are 
shown in Figure 6 and Table I. 

C. Case P3 

The projectile path is the dotted curve bJK of 
Figure 3. Eq. (8) is the equation of motion in Region II. 
In Region IV: 

y' = Q[1/2 - (y - l)/(z - 1)] 
(10) 

[1/2 + (y - I)/(z - 1) - 2y']2. 

In Region V: 

y' = 8Q[Y/(z - 1) - y']2/(z - 1) (11) 

Terminal velocities obtained from numerical integra
tion are shown in Figure 6 and Table I. The transition 
from Region II to Region IV occurs when y/z = 1/2; 
that from IV to V when (y + I)/(z - 1) = 1/2. When 
Q is large the projectile may not pass into Region IV 
at all, or may pass into it at such a late time that the 
event is no longer of interest or significance so far as 
its final velocity is concerned. It is this division of 
projectiles according to Q which produces the mini-

IV. DISCUSSION 

General features of the results are shown in Figure 6. 
If one seeks maximum velocity, the projectile should 
be placed ahead of the explosive: cases PI and P3. 
At lower velocities a rigid backing gives some ad
ditional impulse to the projectile, but, in each case 
calculated, is less effective than doubling the explosive 
thickness with no backing. 

TABLE II 

TERMINAL VELOCITY OF 200 MICRON SPHERE ACCELERATED BY 

EXPLOSIVE CYLINDER WITH L/d = 3; d == a. Q = a/3Od 

Explosive 
a,em Q v/D v m/sec mass 

1.7 .35 3100 3.8 gm 

10 17 .68 6000 8.5 lb 

100 170 .89 7800 4.25 t 

Detonation velocity = 8800 m/sec 

The significance of the results can be better realized 
if we relate them to a particular experiment. Suppose 
a steel sphere of 200 microns diameter is to be accela
rated by an explosive cylinder for which length/dia
meter equals three. Assume that the effective thickness 
of the equivalent slab is one diameter. Then the 
relation between explosive mass and terminal velocity 
is as shown in Table II. This shows clearly that terminal 
velocity increases so slowly with explosive mass that 



.. 

• 

Vol. 7,1969 EXPLOSIVE ACCELERATION OF PROJECTILES 475 

to achieve velocities much higher than about 6000 
meters/second by direct explosive acceleration is 
quite impractical. 

One anticipates that the rapid acceleration may 
subject the projectile to stresses which cause it to 
fracture or deform. These may be estimated by equat
ing the stagnation pressure on the projectile to the 
maximum stress of deformation, (Fo. This yields 

(12) 

In the process of numerical integration, y. was some
times tabulated. The largest values of y' / Q recorded 
were'" .5. Putting this into Eq. (12) with Po = 1.7 g/ec 
and D = 8.8 X 105 em/sec yields (Fo '" 150 kilo bars. 
It is not surprising, then, that explosive-accelerated 
projectiles shatter. The remarkable thing is that 
£ometimes they don't. 
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